$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scan (North et al., 1968) $T_{\text {min }}=0.69 . T_{\text {max }}=0.87$
2192 measured reflections 2062 independent reflections
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=26.97^{\circ}$
$h=-21 \rightarrow 20$
$k=-15 \rightarrow 0$
$l=0 \rightarrow 12$
1 standard reflection frequency: 120 min intensity decay: 1.5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.067$
$S=1.08$
2062 reflections
175 parameters
All H atoms refined

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0376 P)^{2}\right. \\
&+1.4068 P] \\
& \text { where } P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from

International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\left(\AA,^{\circ}\right.$)

$\mathrm{Ni} 1-\mathrm{N} 1$	2.063 (2)	$\mathrm{Pl}-\mathrm{O} 2$	1.581 (2)
Nil-N2	2.079 (2)	$\mathrm{O} 2-\mathrm{HO} 2$	0.78 (4)
Nil-()l	2.144 (2)	$\mathrm{O} 3-\mathrm{HO}_{3}$	0.76 (5)
$\mathrm{Pl}-\mathrm{O} 1$	1.486 (2)	$\mathrm{Nl}-\mathrm{HN} 1$	0.87 (4)
$\mathrm{Pl}-\mathrm{O} 4$	$1.514(2)$	$\mathrm{N}_{2}-\mathrm{HN} 2$	0.83 (3)
$\mathrm{Pl}-\mathrm{O} 3$	1.571 (2)		
N ${ }^{1}-$ - $\mathrm{Ni} 1-\mathrm{Nl}$	180.0	$\mathrm{Ol}{ }^{1}-\mathrm{Nil}-\mathrm{Ol}$	180.0
N1-Nil-N2'	85.56 (9)	O1-PI-()4	116.2 (1)
N1-Nil-N2	94.44 (9)	() $1-\mathrm{Pl}-() 3$	112.4 (1)
$\mathrm{N} 2^{\prime}-\mathrm{Ni} 1-\mathrm{N} 2$	180.0	()4-P1-O3	104.7(1)
$\mathrm{Ni}-\mathrm{Nil}-\mathrm{Ol}^{\text {i }}$	$90.87(8)$	$\mathrm{Ol}-\mathrm{Pl}-\mathrm{O} 2$	106.5 (1)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{Ol}^{1}$	90.16 (8)	$\mathrm{O} 4-\mathrm{Pl}-\mathrm{O}_{2}$	110.4 (1)
$\mathrm{NI}-\mathrm{Nil}-\mathrm{Ol}$	89.13 (8)	$\mathrm{O}^{3}-\mathrm{Pl}-\mathrm{O} 2$	106.3(1)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{Ol}$	89.84 (8)	$\mathrm{Pl}-\mathrm{Ol}-\mathrm{Nil}$	145.1 (1)

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z$.
The θ-scan width was $(0.6+0.6 \tan \theta)^{\circ}$. Data were corrected for Lorentz-polarization effects. The structure was solved by heavy-atom methods and refined by full-matrix least squares. The O atom of the water molecule is disordered. It was refined isotropically and the corresponding H atoms were not located. H atoms of the organic molecule and the phosphate group were located from difference Fourier syntheses and were refined isotropically. The $\mathrm{C}-\mathrm{H}$ distances are in the range 0.91 (4) -0.99 (4) \AA. The two $\mathrm{N}-\mathrm{H}$ distances are 0.83 (3) and $0.87(4) \AA$, and the two $\mathrm{O}-\mathrm{H}$ distances are 0.76 (5) and 0.78 (4) \AA. The $U_{\text {iso }}$ values of the H atoms vary from 0.03 (1) to 0.07 (1) \AA^{2}.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992; Enraf-Nonius, 1994) . Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994). Software used to prepare material for publication: SHELXL93.

[^0]
References

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Hübener, R., Abram, U. \& Strähle, J. (1995). Acta Cryst. C5I, 876878.

Macíček. J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
Mukherjec, M.. Mukherjec, A. K., Pariya. C. \& Ray Chaudhuri. N. (1995). Acta Crust. C51, 1543-1545.

Namouchi-Cherni, S., Driss, A.. El Maaoui, M. \& Jouini, T. (1998). Acta Crust. C54, 1768-1770.
North. A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ruiz, R., Julve. M., Cano, J., Soto, J., Martinez-Manez, R., Munoz, M. C. \& Paya, J. (1993). Transition Met. Chem. 18, 523-527.

Sheldrick, G. M. (1990). Acta Cnst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinememt of Cristal Structures. University of Göttingen. Germany.
Zsolnai, L. (1994). ZORTEP. Program for the Presentation of Thermal Ellipsoids. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 347-349

Chiral bisphosphanes. V. \dagger Chloro $\{$ rac,trans-1-[chloro(piperidin-1-yl)phosphino]-2-[bis-(piperidin-1-yl)phosphino]cyclopentane$\left.P, P^{\prime}\right\}$ neopentylplatinum(II) acetone solvate

Lutz Dahlenburg and Stefan Mertel

Institut für Anorganische Chemie, Universität ErlangenNürnberg, Egerlandstraße I, 91058 Erlangen, Germany:
E-mail: dahlbg@anorganik.chemie.uni-erlangen.de
(Received I6 December 1997; accepted 13 November 1998)

Abstract

In the title compound, $\left[\mathrm{PtCl}\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{ClN}_{3} \mathrm{P}_{2}\right)\right]$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$, coordination about the central metal deviates slightly from ideal square-planar geometry. The $-\mathrm{P}(\mathrm{Cl})-$ $\mathrm{NC}_{5} \mathrm{H}_{10}$ substituent resides in a trans position with respect to the neopentyl group, with the two remaining trans coordination sites being occupied by the chloro ligand and the $-\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}$ residue of the chelating bisphosphane ligand.

Comment

The title complex, (I), was prepared as part of our continuing studies of Group 8 metal complexes derived

[^1]from racemic and optically pure bisphosphanes having chiral phosphorus centres supported on an asymmetric carbon backbone (Eckert et al., 1995; Saare \& Dahlenburg, 1995; Dahlenburg, 1997; Dahlenburg \& Kurth, 1998; Dahlenburg \& Kaunert, 1998). The crystal structure was determined in order to confirm the stereochemistry of the compound, since the cis or trans coordination of the chloro and neopentyl ligands with respect to the $-\mathrm{P}(\mathrm{Cl}) \mathrm{NC}_{5} \mathrm{H}_{10}$ residue and the $-\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}$ substituent of the chelating bisphosphane could not be established unequivocally on the basis of solution NMR data alone.

(I)

The structure determination proves the neopentyl group is trans with respect to the $-\mathrm{P}(\mathrm{Cl}) \mathrm{NC}_{5} \mathrm{H}_{10}$ residue, with the $-\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}$ substituent and the chloro ligand occupying the two remaining sites of the fourcoordinated Pt atom. The X-ray structure analysis also revealed the presence of molecules showing slight tetrahedral distortion from square-planar coordination geometry; although the sum of the four inter-ligand cis angles (359.8°) is as required for a planar coordination of the central metal, the trans angles $\mathrm{P} 1-\mathrm{Pt}-$

Fig. I. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
$\mathrm{C} 1\left[178.6(3)^{\circ}\right]$ and $\mathrm{Cll}-\mathrm{Pt}-\mathrm{P} 2\left[170.37(11)^{\circ}\right]$ deviate considerably from linearity. Consistently, the angle between the normals to the two planes defined by the cis $-\mathrm{C} 1-\mathrm{Pt}-\mathrm{Cl} 1$ and cis- $\mathrm{Pl}-\mathrm{Pt}-\mathrm{P} 2$ fragments, the limiting value of which is 0° for square-planar coordination and 90° for tetrahedral, amounts to 9.2°. The $\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2$ bite angle of $85.39(11)^{\circ}$ is smaller than that of $87.7(1)^{\circ}$ reported earlier for the structurally related complex $\left[(1 S, 2 S)-\mathrm{C}_{5} \mathrm{H}_{8}\left\{\mathrm{P}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{8} \mathrm{H}_{15}-\right.\right.$ cyclo- $(R)\}_{2} \mathrm{PtI}_{2}$], bearing a bis[(cyclooctyl)methylphos-phino]-substituted cyclopentane-based chelate ligand (Dahlenburg \& Kurth, 1998). The significant difference in metal-phosphorus bond lengths observed for $\mathrm{Pt}-\mathrm{Pl}$ [$2.289(3) \AA$] and $\mathrm{Pt}-\mathrm{P} 2$ [2.213 (3) \AA] is as expected, because a chloro ligand is at the trans position for the shorter one and is known to be a much weaker transinfluencing group than the neopentyl residue which is trans to the longer platinum-to-phosphorus bond.

Experimental

An ethereal solution containing rac, trans $-\mathrm{C}_{5} \mathrm{H}_{8}\left[\mathrm{P}(\mathrm{Cl}) \mathrm{NC}_{5} \mathrm{H}_{10}\right]-$ $\left[\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}\right]$ and rac,trans $-\mathrm{C}_{5} \mathrm{H}_{8}\left[\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}\right]_{2}$ in approximately equimolar quantities was prepared from a 1:4:4 reaction between rac,trans $-\mathrm{C}_{5} \mathrm{H}_{8}\left(\mathrm{PCl}_{2}\right)_{2}$ (Allen et al., 1983; Green, 1983), piperidine and triethylamine, and subsequently treated with a slight deficiency of $\left[\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Pt}\left(\mathrm{Cl}^{2}\right) \mathrm{CH}_{2}-\right.$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$] in dichloromethane. After stirring for 24 h , the reaction mixture exhibited ${ }^{31} \mathrm{P}$ NMR resonances at $\delta=$ $\left.79.7{ }^{2} J(\mathrm{P}, \mathrm{P})=18,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=5211 \mathrm{~Hz}\right]$ and $\delta=102.4$ $\left[{ }^{2} J(\mathrm{P}, \mathrm{P})=18,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2007 \mathrm{~Hz}\right]$, as well as at $\delta=$ $79.5\left[^{2} J(\mathrm{P}, \mathrm{P})=16,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=4973 \mathrm{~Hz}\right]$ and $\delta=138.0$ $\left.\Gamma^{2} J(\mathrm{P}, \mathrm{P})=16,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=1711 \mathrm{~Hz}\right]$ (downfield from an external $\mathrm{H}_{3} \mathrm{PO}_{4}$ standard), indicating the presence in solution of [rac,trans $\left.-\mathrm{C}_{5} \mathrm{H}_{8}\left\{\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}\right\}_{2} \mathrm{Pt}\left(\mathrm{Cl}^{2}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $\left[\right.$ rac, trans $-\mathrm{C}_{5} \mathrm{H}_{8}\left\{\mathrm{P}(\mathrm{Cl}) \mathrm{NC}_{5} \mathrm{H}_{10}\right\}\left\{\mathrm{P}\left(\mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}\right\} \mathrm{Pt}(\mathrm{Cl}) \mathrm{CH}_{2}-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, (I), in nearly equal proportions. The two compounds were separated by crystallization from acetone, which gave (I) as single crystals containing one solvent molecule of crystallization.

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{Cl}-\right.\right.$
$\left.\left.\quad \mathrm{N}_{3} \mathrm{P}_{2}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=777.68$
Monoclinic
$P 2_{l} / n$
$a=9.830(3) \AA$
$b=23.121(2) \AA$
$c=15.701(1) \AA$
$\beta=105.95(1)^{\circ}$
$V=3431(1) \AA^{3}$
$Z=4$
$D_{x}=1.505 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=9-14^{\circ}$
$\mu=4.363 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$
Colourless

3241 reflections with $I>2 \sigma(I)$
ω scans
Absorption correction:
empirical via ψ scans
(North et al., 1968)
$T_{\min }=0.463, T_{\max }=0.520$
7090 measured reflections
6024 independent reflections

$$
R_{\mathrm{int}}=0.081
$$

$$
\theta_{\max }=25^{\circ}
$$

$$
h=-11 \rightarrow 11
$$

$$
k=-1 \rightarrow 27
$$

$$
l=-1 \rightarrow 18
$$

3 standard reflections frequency: 60 min intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.100$
$S=1.015$
5938 reflections
339 parameters
H -atom parameters constrained

$$
\begin{gathered}
w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0207 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=-0.014 \\
\Delta \rho_{\max }=0.811 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.744 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. C) }
\end{gathered}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Pt}-\mathrm{Cl}$	2.106 (10)	$\mathrm{Pl}-\mathrm{NI}$	1.632 (9)
$\mathrm{Pl}-\mathrm{P} 2$	2.213 (3)	Pl--C6	1.827 (10)
$\mathrm{Pt}-\mathrm{Pl}$	2.289 (3)	P 2 - N 3	1.648 (9)
$\mathrm{Pt}-\mathrm{Cll}$	2.391 (3)	$\mathrm{P} 2-\mathrm{N} 2$	1.667 (9)
Cl2-Pl	2.088 (4)	$\mathrm{P} 2-\mathrm{C} 7$	1.840 (10)
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{P} 2$	95.2 (3)	$\mathrm{Nl}-\mathrm{Pl}-\mathrm{Pt}$	118.6 (4)
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{Pl}$	178.6 (3)	C6-Pl-P1	108.1 (3)
$\mathrm{P} 2-\mathrm{Pl}-\mathrm{Pl}$	85.39 (11)	$\mathrm{Cl} 2-\mathrm{Pl}-\mathrm{Pt}$	113.7 (2)
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cll}$	87.7 (3)	N3-P2-N2	102.4 (5)
$\mathrm{P} 2-\mathrm{Pl}-\mathrm{Cl} 1$	170.37 (11)	N3-P2-C7	109.8 (5)
$\mathrm{Pl}-\mathrm{Pt}-\mathrm{ClI}$	91.51 (11)	N2--P2-C7	102.9 (5)
N1-P1-C6	105.5 (5)	N3-P2-Pt	116.2 (3)
$\mathrm{NI}-\mathrm{Pl}-\mathrm{Cl} 2$	107.2 (3)	N2--P2-Pt	122.4 (4)
C6-P1-C12	102.2 (4)	C7-P2-Pt	102.1 (4)

All non-H atoms were located by direct methods and subsequent alternate cycles of difference Fourier synthesis and fullmatrix least-squares refinement. The resulting structural model was refined to convergence with allowance for anisotropic thermal motion of the non-H atoms. H atoms were included in geometrically idealized positions employing appropriate riding models with isotropic displacement parameters constrained to 1.3 times the $U_{\text {eq }}$ of their carrier atoms. According to some of the $U^{i j}$ values of the tertiary butyl C atoms, rotational disorder about the $\mathrm{C} 1-\mathrm{C} 2$ bond was suggested for this substituent, but was not accounted for during refinement. The highest peaks in the final difference map were located less than $1.0 \AA$ from the Pt atom.

Data collection: CAD-4-PC (Enraf-Nonius, 1995). Cell refinement: CAD-4-PC. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR92 (Altomare et al., 1992). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1990). Software used to prepare material for publication: SHELXL93.

Support by the Deutsche Forschungsgemeinschaft (Bonn), the Fonds der Chemischen Industrie (Frankfurt/Main) and the Degussa AG (Hanau) is gratefully acknowledged.

[^2]
References

Allen, D. L.. Gibson, V. C., Green, M. L. H., Skinner, J. F., Bashkin, J. \& Grebenik, P. D. (1983). J. Chem. Soc. Chem. Commun. p. 895.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1992). SIR92. Program for the Solution of Crystal Structures. University of Bari, Italy.
Dahlenburg, L. (1997). German Patent Appl. No. 19732 805.9.
Dahlenburg, L. \& Kaunert, A. (1998). Acta Cryst. C54, 1016-1017.
Dahlenburg, L. \& Kurth, V. (1998). Eur. J. Inorg. Chem. pp. 597-603.
Eckert, C., Dahlenburg, L. \& Wolski, A. (1995). Z. Naturforsch. Teil B, 50, 1004-1008.
Enraf-Nonius (1995). CAD-4-PC. Version 1.5. Enraf-Nonius, Delft. The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, the Netherlands.
Green, M. L. H. (1983). Eur. Patent Appl. No. 117156, 1-32. (To British Petroleum Co., 1983/84.)
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Saare, A. \& Dahlenburg, L. (1995). Z. Naturforsch. Teil B, 50, 10091017.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). XP. Interactive Molecular Graphics. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 349-351

A monohelical cobalt(II) complex of a quinquepyridine ligand

You-Jun Fu, ${ }^{a}$ Zhang-Shou Gao, " Hao Yang, ${ }^{\text {b }}$ Wenning Dal, ${ }^{h}$ Defen Wang, ${ }^{b}$ Hongwen Hu, ${ }^{b}$ Wenxia Tang, ${ }^{b}$ Zeying Zhang ${ }^{c}{ }^{\text {and }}$ and Thomas C. W. Mak ${ }^{c}$
"State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China, ${ }^{\text {b }}$ State Key Laboratory of Coordination Chemistry, Chemistry Department, Nanjing University, Nanjing 210093, People's Republic of China, and 'Chemistry Department, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: zsgao@hosts. icm.sdu.edu.cn

(Received 29 Januar! 1998: accepted 20 October 1998)

Abstract

The monohelical mononuclear title complex, $\left(6,6^{\prime \prime \prime \prime}\right.$-di-methyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}: 6^{\prime \prime}, 2^{\prime \prime \prime}: 6^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}$-quinquepyridine- ${ }^{5} N$)bis(nitrato)cobalt(II), $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5}\right)\right]$, was obtained by the reaction of the quinquepyridine ligand (dmqpy) with hydrated cobalt nitrate, $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$. In the complex, the coordination geometry of the Co^{11} atom is a distorted pentagonal bipyramid, with the dmqpy ligand twisted about the equatorial plane and the two NO_{3}^{-}ions occupying the apical positions.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1417). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Part IV: Dahlenburg \& Kaunert (1998).

[^2]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1171). Scrvices for accessing these data are described at the back of the journal.

